
C1. FaceIt & ViewIt Commands
    As described in the "Startup" topics, communication between a program and FaceWare 
modules is accomplished via the global fRec record and the "FaceIt" dispatching procedure.   
The fRec record is described in the "fRec Record" topic, and commands supported by FaceIt 
and ViewIt that can be passed to the FaceIt dipatching procedure are described in the other 
topics under the "Commands" menu.

Command Format
    The FaceIt dispatching procedure is found in the "FaceProcXY" file (or in some other form 
compatible with your programming environment).    Calls to this procedure always have the 
form,
    FaceIt(nil,[command],a,b,c,d);      Pascal
    FaceIt(0,[command],a,b,c,d);          /* C, C++ */
    call FaceIt(0,[command],a,b,c,d) !FORTRAN
where parameters a, b, c, and d are 4-byte integers, and where other record elements from 
the global fRec or other records may be used with particular commands.
    Each FaceIt and ViewIt command name, its equivalent number, the parameters and record 
elements used by the command, and a complete description of the command are presented 
in the topics under the "Commands" menu.    Command names can be used in place of the 
numbers in calls to the FaceIt procedure since they are declared as constants in the 
"FaceStorXY" file (or in some other way compatible with your programming environment).

Command Types
    The commands described under the "Commands" menu are of 3 general types:
    1. "Program Commands" are commands supported by the FaceIt module that deal with 
program-wide features (the main loop, the main menu bar, modeless window management, 
etc.).
    2. "Window" and "Control Commands" are commands supported by the ViewIt module that
deal directly with ViewIt windows and controls.
    3. The "Utilities" commands are also supported by ViewIt, but provide a wide range of 
utility-type routines that augment the Macintosh toolbox.    These utility routines are used 
internally by ViewIt and control drivers, but can also be called by your program for its own 
purposes.

Clobbered Variables
    Most fRec variables are scratch variables that can be changed by any call to the FaceIt 
dispatching procedure or to the Control Manager (since the Control Manager then calls 
ViewIt via CDEF 1200).    The scratch variables include all those prefixed by the letters "u", 
"w", or "c".    This means that you cannot rely on the content of these fRec variables across 
calls to FaceIt or the Control Manager.    The rule of thumb to follow is that if you will be using
such an fRec variable in more than one FaceIt or Control Manager call, then save a copy of 
its contents in a local variable and use the copy.    The major exception to this rule is that 
most utility-type routines preserve the content of the "w" and "c" variables since they do not
deal directly with ViewIt windows.
    Suppose, for example, that a control handle is needed for use in a single call to 
"SizeControl".    In this case you can get away with using the cControl returned by GetCtl:
 FaceIt(nil,GetCtl,1030,0,1,5);
 SizeControl(fRec.cControl,100,100);
But if the control handle is also used in a subsequent call, then a copy of cControl should be 
used:
 FaceIt(nil,GetCtl,1030,0,1,5);
 theControl := fRec.cControl;
 SizeControl(theControl,100,100);



 FaceIt(nil,AddCtl,1004,0,ord(theControl),0);
since both the Control Manager and FaceIt calls can result in clobbering the current values in
fRec.
    The same precaution should be taken with commonly used variables such as uString, 
uMenuID, uMenuItem, wvHit, wcHit, and wiHit, although these are most often used as simple
case selectors in case blocks in a way that does not require their contents to be saved.    The
following code, for example, is safe since it makes just one use of uMenuID between calls to 
DoLoop:
 repeat
    FaceIt(nil,DoLoop,0,0,0,0);
    if (uMenuID = 1001) then
      ...
    else if (uMenuID = 1002) then
      ...
    else if (uMenuID = 1003) then
      ...
 until false;
but the similar code that follows is asking for trouble since it assumes that the actions taken 
after each "if...then" do not affect the contents of uMenuID:
 repeat
    FaceIt(nil,DoLoop,0,0,0,0);
    if (uMenuID = 1001) then
      ...
    if (uMenuID = 1002) then
      ...
    if (uMenuID = 1003) then
      ...
 until false;
This code could also be fixed by simply storing the contents of uMenuID in a local variable 
and using that variable in the "if...then" blocks.


